Glucocerebrosidase Deficiency in Substantia Nigra of Parkinson Disease Brains
نویسندگان
چکیده
OBJECTIVE Mutations in the glucocerebrosidase gene (GBA) represent a significant risk factor for developing Parkinson disease (PD). We investigated the enzymatic activity of glucocerebrosidase (GCase) in PD brains carrying heterozygote GBA mutations (PD+GBA) and sporadic PD brains. METHODS GCase activity was measured using a fluorescent assay in cerebellum, frontal cortex, putamen, amygdala, and substantia nigra of PD+GBA (n = 9-14) and sporadic PD brains (n = 12-14). Protein expression of GCase and other lysosomal proteins was determined by western blotting. The relation between GCase, α-synuclein, and mitochondria function was also investigated in vitro. RESULTS A significant decrease in GCase activity was observed in all PD+GBA brain areas except the frontal cortex. The greatest deficiency was in the substantia nigra (58% decrease; p < 0.01). GCase activity was also significantly decreased in the substantia nigra (33% decrease; p < 0.05) and cerebellum (24% decrease; p < 0.05) of sporadic PD brains. GCase protein expression was lower in PD+GBA and PD brains, whereas increased C/EBP homologous protein and binding immunoglobulin protein levels indicated that the unfolded protein response was activated. Elevated α-synuclein levels or PTEN-induced putative kinase 1 deficiency in cultured cells had a significant effect on GCase protein levels. INTERPRETATION GCase deficiency in PD brains with GBA mutations is a combination of decreased catalytic activity and reduced protein levels. This is most pronounced in the substantia nigra. Biochemical changes involved in PD pathogenesis affect wild-type GCase protein expression in vitro, and these could be contributing factors to the GCase deficiency observed in sporadic PD brains.
منابع مشابه
Homocysteine intracerebroventricular injection induces apoptosis in the Substantia Nigra cells and Parkinson like behavior in rat
Parkinson's disease is a degenerative disorder of the central nervous system. The motor symptoms of Parkinson's disease result from the death of dopamine-generating cells in the substantia nigra, a region of the midbrain the cause of this cell death is unknown. Homocysteine (Hcy) is a non-protein amino acid. It is a homologue of the amino acid cysteine. The elevated levels of homocysteine in p...
متن کاملSpatial and temporal correlation between neuron loss and neuroinflammation in a mouse model of neuronopathic Gaucher disease.
Gaucher disease (GD), the most common lysosomal storage disorder, is caused by a deficiency in the lysosomal enzyme glucocerebrosidase (GlcCerase), which results in intracellular accumulation of glucosylceramide (GlcCer). The rare neuronopathic forms of GD are characterized by profound neurological impairment and neuronal cell death, but little is known about the neuropathological changes that ...
متن کاملThe L444P Gba1 mutation enhances alpha-synuclein induced loss of nigral dopaminergic neurons in mice
Mutations in glucocerebrosidase 1 (GBA1) represent the most prevalent risk factor for Parkinson's disease. The molecular mechanisms underlying the link between GBA1 mutations and Parkinson's disease are incompletely understood. We analysed two aged (24-month-old) Gba1 mouse models, one carrying a knock-out mutation and the other a L444P knock-in mutation. A significant reduction of glucocerebro...
متن کاملTrehalose Neuroprotective Effects on the Substantia Nigra Dopaminergic Cells by Activating Autophagy and Non-canonical Nrf2 Pathways
Trehalose, as a natural disaccharide, is known as an autophagy inducer. The neuroprotectiveeffects of trehalose in the rat model of Parkinson′s disease were the aim of the present study.Parkinson′s disease model was induced by injecting 6-hydroxydopamine (6-OHDA) in thestriatum of male Wistar rats. Apomorphine-induced behavior and substantia nigra neuronalcounts were app...
متن کاملProgressive decline of glucocerebrosidase in aging and Parkinson's disease
The principal risk factor for developing most adult onset neurodegenerative diseases is aging, with incidence rising significantly after age 50. Despite research efforts, the causes of Parkinson's disease (PD) remain unknown. As neurons age, they show signs of diminished lysosomal and mitochondrial function, including increased oxidative stress and accumulation of misfolded proteins, and these ...
متن کامل